SEMESTER-III

COURSE 8: INFERENTIAL STATISTICS

Theory	Credits: 3	3 hrs/week
Course Objective:		
This course enables students methods.	s to gain knowledge in sampling, hypothesis testing and no	n parametric
Course Outcomes:		
After going through this cou	urse, the students will get	
CO1: a fundamental unders	tanding of Parametric models for developing relevant infe	rences on
associated parameters,		
CO2: knowledge of point a	and interval estimation procedures and different methods	of point
estimation,		
CO3: using Neyman Pearson	n Lemma and finding Uniformly Most Powerful Test,	
CO4:various basic concepts	s on sampling distributions and large sample tests base	ed on normal
distribution,		
CO5 : small sample tests bas	sed on chi-square, Student's and Snedecor's F distributions	5
Unit I		
Theory of Estimation: Para	meter, Statistic, Standard Error of the statistic, concept of	of bias and mean
square error of an estimate	e, Criteria of good estimator - unbiasedness, consistency	, efficiency, and
sufficiency. Methods of	estimation- Maximum Likelihood estimator(MLE) a	and Method of
Moments(MME).Concepts	of confidence interval and confidence coefficient, confide	ence intervals for
the parameters of univariate	normal,	
Unit II		
Testing of Hypothesis : Star	tistical hypotheses, critical region, size and power of a tes	st, most powerful
test, two types of errors. Ne	yman Pearson lemma(WITHOUT PROOF) and its applica	ations, uniformly
most powerful unbiased tes	t. One and two tailed tests. Procedure for testing of hyp	othesis, Tests of

Unit III

difference of means.

Exact Sampling distributions : Student's t-distribution, Chi-square distribution, Snedecor's Fdistribution – definitions, properties and applications. Tests of significance for small samples: Student's t-distribution - single mean, difference of means and paired t-test. Chi-square distribution-test for goodness of fit and independence of attributes.

significance of large samples - Single proportion and difference of proportions, single mean and

Unit IV

F-distribution – definition, properties and applications – F-test for equality of two population variances. ANOVA one way and two-way classifications

Unit V

Non-parametric methods- definition, advantages and disadvantages. One sample test- Sign test, Run test, Wilcoxon-signed rank test. Two independent sample tests: Median test, Wilcoxon- Mann Whitney U - test, Kruskal Wallis test - Simple Problems Note: Without proofs of named theorems and more importance to applications.

TEXT BOOK:

S.C. Gupta, (2019), Seventh Edition, Fundamentals of Statistics, Mumbai: Himalaya Publishing House.

REFERENCE BOOKS

1. Sharma, J. K. (2013), Business statistics, New Delhi: Pearson Education

2. Levine, D.M., Berenson, M. L. & Stephan, D. (2012), Statistics for managers using Microsoft Excel, New Delhi: Prentice Hall India Pvt.

3. Aczel, A. D. & Sounderpandian, J. (2011), Complete Business Statistics, New Delhi: Tata McGraw Hill.

4. Anderson, D., Sweeney, D., Williams, T., Camm, J., & Cochran, J. (2013), Statistics for Business and Economics, New Delhi: Cengage Learning.

5. Davis, G., &Pecar, B. (2014), Business Statistics using Excel, New Delhi: Oxford University Press. Websites of Interest:

http://onlinestatbook.com/rvls/index.html

Co-Curricular Activities in the class:

- 1. Pictionary
- 2. Case Studies on topics in field of statistics
- 3. Snap test and Open Book test
- 4. Architectural To be build the procedures
- 5. Extempore Random concept to students
- 6. Interactive Sessions
- 7. Teaching through real world examples

@@@@

SEMESTER-III

COURSE 8: INFERENTIAL STATISTICS

Practical	Credits: 1	2 hrs/week

Course Objective:

This course enables students to gain hands-on practical experience of SPSS for analysing data by implementing sample tests, ANOVA and nonparametric tests..

Course Outcome:

Upon successful completion of this course, students should have the knowledge and skills to:

CO1: Apply the various statistical methods for real life problems PO2

CO2 Apply the SPSS techniques and give the interpretations. PO2

List of Practicals using SPSS

1. Large Sample Tests: Test of significance of (a) Single Mean (b) Difference of means

2. Large Sample Tests: Test of significance of (a) Single Proportion (b) Difference of Proportions

3. Small Sample Tests: t-Test for significance of (a) Single mean (b) Difference of means- samples are independent (c) Difference of means- samples are dependent

4. Chi square Test of (a) Independence 2x2 Cross tabulation, (b) Goodness of fit

5 Test for several means ANOVA (a) One-way (b) Two- way classification,

6 Non Parametric Tests (a) Mann Whitney U test, (b) Wilcoxon Signed ranks test, (c) Kruskal Wallis Test, (d) Friedman test Note: Training shall be in SPSS and derive the results. The SPSS output shall be exported to MS word for writing inference.

Reference Manual: Practical Manual -Prepared by the Department Faculty Members

Websites of Interest: http://www.statsci.org/datasets.html

Scheme of Valuation for Practical Paper (i) Continuous evaluation 10 Marks (ii) External Evaluation: 40 marks

@@@@@