SEMESTER-III COURSE 2: STATISTICAL METHODS

Theory Credits: 3 3 hrs/week

I. Learning Outcomes

After successful completion of the course students will be able to:

- 1. To get the knowledge of estimating future values by using curve fitting.
- 2. To calculate the relationship between bivariate data.
- 3. To find the relationship about the multivariate data.
- 4. To acquaint about the forecasting of the data by using regression techniques.
- 5. To find the association of the categorical data by using attributes.

II. Syllabus

Unit – 1: Curve fitting

Bivariate data, Principle of least squares, fitting of kth degree polynomial. Fitting of straight line, Fitting of Second degree polynomial or parabola, fitting of family of exponential curves and power curve.

Unit – 2: Correlation

Meaning, Types of Correlation, Measures of Correlation – Scatter diagram, Karl Pearson's Coefficient of Correlation, Rank Correlation Coefficient (with and without ties), Properties. Bivariate frequency distribution, correlation coefficient for bivariate data and problems. Lag and Lead in correlation.

Unit – 3:

Coefficient of concurrent deviation, probable error and its properties, coefficient of determination, Concept of multiple and partial correlation coefficients (three variables only), properties and problems, intra-class correlation and correlation ratio.

Unit – 4: Regression

Concept of Regression, Linear and Non Linear regression. Linear Regression – Regression lines, Regression coefficients and it properties, Angle between two lines of regression. Regressions lines for bivariate data and simple problems. Correlation vs regression. Explained and Unexplained variations.

Unit – 5: Attributes

Notations, Class, Order of class frequencies, Ultimate class frequencies, Consistency of data, Conditions for consistency of data for 2 and 3 attributes only, Independence of attributes, Association of attributes and its measures, Relationship between association and colligation of attributes, Contingency table: Square contingency, Mean square contingency, Coefficient of mean square contingency, Tschuprow's coefficient of contingency.

SEMESTER-III COURSE 2: STATISTICAL METHODS

Practical Credits: 1 2 hrs/week

Practical Syllabus

- 1. Fitting of straight line by the method of least squares
- 2. Fitting of parabola by the method of least squares
- 3. Fitting of exponential curve of two types by the method of least squares.
- 4. Fitting of power curve of the type by the method of least squares.
- 5. Computation of correlation coefficient and regression lines for ungrouped data.
- 6. Computation of correlation coefficient for bivariate frequency distribution.
- 7. Computation of correlation coefficient, forming regression lines for grouped data.
- 8. Computation of partial and multiple correlation coefficients.
- 9. Computation of Yule's coefficient of association and colligation.
- 10. Computation of Pearson's, Tschuprow's coefficient of contingency.

Note: Training shall be on establishing formulae in Excel cells and derive the results. The excel output shall be exported to MS word for writing inference.

III. References

- 1. S. C. Gupta & V. K. Kapoor: Fundamentals of Mathematical Statistics, Sultan Chand & Sons, New Delhi.
- 2. O. P. Gupta: Mathematical Statistics, Kedar nath Ram nath & Co.
- 3. P. N. Arora & S. Arora: Quantitative Aptitude Statistics Vol II, S. Chand & Company Ltd.
- 4. K. Rohatgi & Ehsanes Saleh: An Introduction to Probability and Statistics, John Wiley & Sons.

IV. Suggested Co-curricular Activities:

- 1. Training of students by related industrial experts
- 2. Assignments including technical assignments if any.
- 3. Seminars, Group Discussions, Quiz, Debates etc on related topics.
- 4. Preparation of audio and videos on tools of diagrammatic and graphical representations.
- 5. Collection of material/figures/photos/author photoes of related topics.
- 6. Invited lectures and presentations of stalwarts to those topics.
- 7. Visits/field trips of firms, research organizations etc.